Geo Tech Note:

Computation of Cross-Axis Tilts

900 Series Biaxial Inclinometers

Figure 1. Plan View

Assumptions

- 1. Planes XY and CD are initially horizontal.
- 2. Scale factors, S_χ and S_ψ for rotations in vertical planes parallel to X and Y directions are given.
- 3. Voltage outputs of X and Y channels, V_X and V_Y are: measured voltages minus bias (see below).
- 4. Bias voltages, B_x and B_y have been measured. Bias voltages are the tiltmeter's X and Y outputs when it is perfectly horizontal.

Problem

- 1. Rotation occurs in a vertical plane parallel to direction C.
- 2. Find angle α , which defines C direction.
- 3. Find amplitude of rotation, θ_c .

Solution

For rotation in the X or Y directions, rotation amplitude is given by

 $\theta_{\rm x} = {\rm S_x \, V_x}$ and $\theta_{\rm y} = {\rm S_y \, V_y}$ where ${\rm S_x}$ and ${\rm S_y}$ are the scale factors given in the user's manual or calibration certificate.

For rotation in the C direction we define new scale factors:

$$S_c' = S_x/\cos \alpha$$
 and $S_c'' = S_x/\cos (90^\circ - \alpha)$

The rotation amplitude in the C direction then becomes:

$$\theta_{c} = S_{c}' V_{x} = (S_{x}/\cos \alpha) (V_{x})$$

[1]

$$\theta_C = S_C V_y = [S_y/\cos(90^\circ - \alpha)] (V_y)$$
 [

Equating [1] and [2] and solving gives:

$$\frac{S_{\chi}V_{\chi}}{\cos \alpha} = \frac{S_{\gamma}V_{\gamma}}{\cos (90^{\circ} - \alpha)}$$

$$\frac{S_{\chi}V_{\chi}}{S_{\nu}V_{\nu}} = \frac{\cos \alpha}{\cos (90^{\circ} - \alpha)} = \frac{1}{\tan \alpha}$$

$$\alpha = tan^{-1} S_{\gamma}V_{\gamma} S_{\chi}V_{\chi}$$
 [3]

Substituting α in equation [1] or [2] along with the known values of S_x and $V_{x'}$ or S_y and $V_{y'}$ gives the rotation angle, θ_C .

Summary: Steps in Measuring Cross-Axis Tilt Angle, θ_c

- 1. Measure bias voltages, B_v and B_v, on both tilt channels.
- 2. Subtract B_x and B_y from measured voltages to obtain corrected outputs V_v and V_v for use in eqns. [1] through [3].
- 3. Compute α from equation [3] using known scale factors \boldsymbol{S}_χ and \boldsymbol{S}_γ
- 4. Compute θ_c from equation [1] or [2].

