ECC-2D Series 2D Digital Compass

JEWEII Instruments

Making Sense out of Motion...

Jewell has a 40+ year history of providing precision force-balanced accelerometers and is pleased to provide electronic compass parts with the same attention to detail that our customers demand.

The ECC-2D Series is a low-cost 2D digital compass in a small package with low power consumption and high reliability designed for commercial and industrial users.

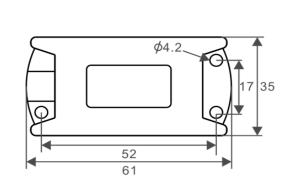
21

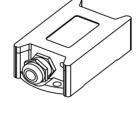
Outline Diagram

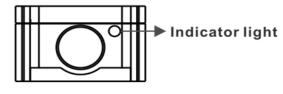
Features

• Heading accuracy: ±1°

- Hard & soft iron magnetic compensation
- Wide operating temp range: -40° to +85°C
- Low-cost electronic compass
- RS232, RS485, and TTL outputs
- Small footprint (61L x 35W x 21H mm)
- 5Vdc power supply
- IP67 seal


Applications


- Platform stabilization
- Satellite Antenna Control
- ROV/UUV Unmanned Underwater vehicles


AGATTIVE

- Marine navigation surveying & mapping
- Weather buoys
- Antenna positioning
 NORTH
 HEADING

PITCH AXIS

Dimension: 61 L x 35 W x 21 H mm

Pin Out

Wire color	Function
Red	5V
Black	GND
Yellow	RS232 (RXD)/RS485 (D+)
Green	RS232 (TXD)/RS485 (D-)

Jewell Instruments LLC, 850 Perimeter Road, Manchester, NH 03103 sales@jewellinstruments.com • www.jewellinstruments.com • Tel (800) 227-5955

MAGATIVE

POSITIVE

ROLL

Rev C

*Performance Specifications:

Heading	0.49	
Resolution	0.1°	
Accuracy	1°	
Compass parameters		
	1° (±15° range)	
Pitch Accuracy	1.5° (±30° range)	
	2° (±60° range)	
	3° (±90° range)	
Pitch tilt angle	±80°	
	1° (±15° range)	
Roll Accuracy	1.5° (±30° range)	
Non Accuracy	2° (±60° range)	
	3° (±90° range)	
Roll tilt angle	±80°	
Best compensation angular range	40°	
Calibration		
Hard iron calibration	Yes	
Soft iron calibration	Yes	
Magnetic field interface calibration method	Plane rotation in a circle (2D calibration)	
Interface		
Start-up delay	< 50 msec	
Max output rate	20 Hz	
Baud rate	2400 to 19200	
Output format	Binary	
Electrical		
	5 Vdc (default)	
Input voltage	9-36 Vdc (custom)	
	45 mA max. operating	
Input current	35 mA Idle	
	≤ 35 mA standby	
Environmental		
Operating Temp	-40° to +85° C	
Storage Temp	-40° to +100° C	
Shock	2500g	
Electromagnetic compatibility	according to EN61000 and GBT17626	
Insulation resistance	≥ 100m	
Shock resistance	100g@11ms, 3x/Axis (1/2 Sinusoidal)	
Vibration	100g@11113, 5X/AXIS (1/2 5110301081)	
Mechanical	1051113, 10 1000 112	
Wires	4	
Cable length	1 meter with leads (default)	
	160g without cable	
Weight 160g without cable		

*Note: Specifications subject to change without notice

Making Sense out of Motion...

Installation & Calibration:

For best performance, please follow the recommendations below:

1) Place the compass as far as possible (at least 40 cm) from iron, magnets, engines and other magnetic objects that can interfere with the sensor measurements

2) During installation, use M3 stainless steel screws to mount each unit

3) Download the compass software

4) If the compass will be permanently mounted on a portable device, install the compass first to the surface before proceeding with the calibration below

5) Place the unit horizontally on a flat surface away from magnetic interference and connect to a RS485-to-RS232 converter if using a computer to collect the data

6) Send the following command to begin calibration: **68 04 00 08 0C** in hexadecimal format (or click the "**CALI-START**" button on the compass program)

7) ECC compass will return the response command.

8) Horizontally rotate the compass 360 degrees on a non-magnetic surface proceeding the magnetic field data acquisition. The rotation should happen very slowly (about 40 seconds for a full rotation).

9) After a full 360° rotation, stop the calibration by sending the following command: **68 04 00 0A 0E** in hexadecimal format (or click "CALI-SAVE" button on the compass program)

Note: If the compass is installed in another enclosure assembly, the enclosure assembly will have magnetic interference, in order to calibrate compass installed, then calibrate by rotating the complete enclosure assembly together which insure accurate calibration.

Jewell Instruments LLC, 850 Perimeter Road, Manchester, NH 03103

sales@jewellinstruments.com • www.jewellinstruments.com • Tel (800) 227-5955

Making Sense out of Motion...

2D Compass Program:

Open/Close:	Open and close COM port;
Com:	Select the COM port connected to the ecompass
Address:	Default is 00
Set new address:	Click on 'Set Addr button'
Save data:	Click 'Save', the file is stored by default in C:\ COMDATA file
Set Zero:	Set the current angle to 00.00 degrees
Cancel Zero:	Undo the 'Set Zero' to factory default zero deg
Baud Rate:	Default is 9600
Set Baud rate:	Select a different value by clicking on 'Baud Rate', then 'Set B.R.'
Auto Output:	Switch to automatic output mode
Catechism:	Switch to a single measurement followed by a command entered in the 'Send Command' box
Mag. Dec.:	Magnetic declination setting. Enter the local magnetic declination, then click 'Mag.Dec' button to confirm
Calibration:	Compass calibration forum
Start button:	Begins calibration
Save data:	Stops calibration and save data
<u>Note:</u>	

After installing the sofware and program won't open, please utilize following these steps:

1) Copy these three files: mscomm.srg, mscomm32.ocx, and mscomm32.dep from the folder to C:/Windows/system32 path below

2) Click "Start", then "run" : regsvr32 mscomm32.ocx

Protocol:

1. DATA FRAME FORMAT: (8 bits date, 1 bit stop, No check, Default baud rate 9600)

Identifier (1byte)	Date Length (1byte)	Address code (1byte)	Command word (1byte)	Date domain	Check sum (1byte)
68					

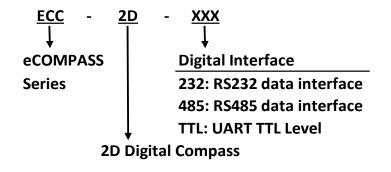
Identifier: Fixed68H

Data length: From data length to check sum (including check sum) length

Address code: Accumulating module address, Default:00

Date domain will be changed according to the content and length of command word

Check sum: Data length, Address code, Command word and data domain sum, No carry.


2. COMMAND word analysis

Desc.	Meaning/Example	Description
0X08	Start calibration command	Data domain (0byte)
	68 04 00 08 0C	No Data domain command
0X88	Sensor answer reply	Data domain (1byte)
	E.g: 68 05 00 88 00 8D	Data domain in the number means the sensor response
		result
		00 Start success FF Start failure
0X0A	Save calibration command	Data domain (0byte)
	68 05 00 8A 00 8F	No Data domain command
0X8A	Sensor answer reply command	Data domain (1byte)
	E.g.: 68 05 00 8A 00 8F	Data domain in the number means the sensor response
		result
		00 Success
		FF Failure
0X0B	Setting communication	Data domain (1byte)
	baud rate command	Baud rate: default :9600
	68 05 00 0B 02 12	00 means 2400
		01 means 4800
		02 means 9600 03 means 19200
		04 means 38400
		05 means 115200
0X8B	Sensor answer reply command	Data domain (1byte)
UNDB	E.g.: 68 05 00 8B 00 90	Data domain in the number means the sensor response
	E.g. 00 00 00 00 00	result
		00 Success FF Failure
0X0F	Setting module address	Data domain(1byte)
	command	XX module address, address from 00 to EF range
	68 05 00 0F 01 15	Note: Our products have a unified address: FF, if forgot
		the set address when operating, can use the FF
		address to operate the product, still normal
		response.
0X8F	Sensor answer reply command	Data domain (1byte)
	E.g.: 68 05 00 8F 94	Data domain in the number means the sensor response
		result
		00 Success FF Failure
0X0C	Setting angle output mode	Data domain (1byte)
	68 05 00 0C 00 11	00: answer reply mode 01: Auto output mode
		Default: answer reply mode
0X8C	Sensor answer reply command	Data domain (1byte),
	E.g:68 05 00 8C 00 91	Data domain in the number means the sensor response
		result
		00 Success FF Failure

ECC-2D Series 2D Digital Compass

HOW TO ORDER

Model: ECC-2D-RS485 Description: ECC Series, eCOMPASS Electronic Compass, RS485 Digital Interface.